
COP 3330: Introduction To Classes Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Introduction to Classes – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Introduction To Classes Page 2 © Mark Llewellyn

Classes

• A class is a blueprint or template of its objects.

• We can create many objects from a single class.

• Creating an object from a class is called
instantiation, and an object is an instance of a
particular class.

• Normally, an object is created from a class using
the new operator.
– new ClassName(parameters)

COP 3330: Introduction To Classes Page 3 © Mark Llewellyn

Classes (cont.)
• new InputStreamReader(System.in)

used to create an InputStreamReader object

• When a new operator is executed the constructor method of
the class is activated to create an instance of that class, and
that instance is initialized by the constructor method.

• The constructor method has same name as the class and
does not have any return type.

• There are some short cuts to create objects of certain pre-
defined classes in Java API.
– String class: “abc” creates an object of String class
– array classes: int[] x = {5,2,1};

creates an int array object with size 3 and initializes that array.

COP 3330: Introduction To Classes Page 4 © Mark Llewellyn

Class Declaration

[ClassAccesibilityModifiers] [OtherClassModifiers]
class ClassName
[extends SuperClass]
[implements Interface1,...,Interfacen]

{

ClassMemberDeclarations
}

COP 3330: Introduction To Classes Page 5 © Mark Llewellyn

Class Accessibility Modifiers
• There are three class accessibility modifiers:
public

A public class is accessible by any class.

private
A private class is accessible only the classes within the same file.

When no modifier is present, (default case) the class is
accessible by all the classes within the same package. This
accessibility modifier (no modifier) is known as package
accessibility modifier.

COP 3330: Introduction To Classes Page 6 © Mark Llewellyn

Other Class Modifiers

abstract

- An abstract class contains abstract methods.
- An abstract method is an unimplemented method.

(we will talk abstract classes later).

final

- A final class may not have sub-classes.

COP 3330: Introduction To Classes Page 7 © Mark Llewellyn

Class Member Declarations

• Inside of a class, we may declare the following class members:

– Fields – data-variables declared in the class.

– Methods – methods declared in the class.

– Constructors – special methods to create objects of the
class, and to initialize fields.

– Inner Classes -- classes nested in the class. An inner class
cannot have any other inner class. This means that the
nesting is only one level. (we are not going to talk too much
about inner classes).

COP 3330: Introduction To Classes Page 8 © Mark Llewellyn

Class Member Declarations (cont.)

• The order of the declarations is not important, but it is
nice to use the following order. Following this
convention will make your program easier to read.

class ClassName {
Fields
Constructors
Methods

}

COP 3330: Introduction To Classes Page 9 © Mark Llewellyn

Accessibility Modifiers for Class Members

• There are four accessibility modifiers for class members:
public

A public member is accessible by any class.

private
A private member is accessible only the class itself.

protected
A protected member is accessible by the class itself, all its sub-classes, and
all the classes within the same package.

When no modifier is present, (by default) the member is accessible by all the
classes within the same package. This accessibility modifier (no modifier) is
known as package accessibility modifier.

COP 3330: Introduction To Classes Page 10 © Mark Llewellyn

Accessibility Modifiers for Class Members (cont.)

nononoyes
Non-subclasses
in a different
package

noyesnoyes
Sub-classes in a
different
package

yesyesnoyes
Classes in the
same package

yesyesyesyesThe class itself

packageprotectedprivatepublic

COP 3330: Introduction To Classes Page 11 © Mark Llewellyn

Fields

• Fields are also known as attributes.

• Fields are the data-variables declared in that class.

• A data-variable can be:

– an instance variable (declared without using
keyword static), or

– a class variable (declared using keyword
static, it is also known as a static variable).

COP 3330: Introduction To Classes Page 12 © Mark Llewellyn

Fields (cont.)

• An instance variable lives in an object of that
class, and each object of that class has its own
copy of that variable.

• A static variable is a class-variable and there is
only one copy for it. All instances of that class
share that single copy.

• A field declared with a final modifier, it is a
constant and its value cannot be changed.

COP 3330: Introduction To Classes Page 13 © Mark Llewellyn

Declarations of Fields
• A field declaration can be in the following form:

[FieldModifiers] Type
FieldName1 [= Initializer1], ... ,
FieldNamen [= Initializern] ;

Examples:
public int a;

int b=1, c=2;
private double x;
protected int y;

private static int x;
public static int y;

public final int CONST1 = 5;
private static final int CONST2 = 6;

COP 3330: Introduction To Classes Page 14 © Mark Llewellyn

Methods
• A method can be:

– an instance method (declared without using keyword
static), or

– a class method (declared using keyword static, it is
also known as a static method).

• An instance method is associated with an object. If an
instance method accesses an instance variable, it accesses the
copy of that instance variable in the current object. It looks
like that there are multiple copies of an instance method (one
for each instance of that class).

COP 3330: Introduction To Classes Page 15 © Mark Llewellyn

Methods (cont.)

• A static method is a class-method and there is only
one copy for it. All instances of that class share that
single copy. A static method cannot access an
instance variable or an instance method.

• If a method is declared with a final modifier, it
cannot be overridden in the sub-classes of the class.

COP 3330: Introduction To Classes Page 16 © Mark Llewellyn

Method Declaration

• A method declaration can be in the following form:

[MethodModifiers] ReturnType MethodName
([FormalParameterList]) { Statements }

Examples:
public int m1(int x) { ... }
public void m2(double x) { ... }
private void m3(int x, double y) { ... }
protected void m4() { ... }
int m5() { ... }
private final void m6() { ... }
public static int m7() { ... }
private static final m8() { ... }

COP 3330: Introduction To Classes Page 17 © Mark Llewellyn

Creating Objects
class C {

// fields
private int x;
private double y;
// constructors
public C() { x=1; y=2.2; }
// methods
public void m1 (int val) { x=val; }
public void m2 (double val) { y=val; }

}

• The constructor method must have the same name as the
class, and it does not have any return type (not even void).

• Variables x and y are instance-variables, and they can be
seen only by the methods of this class.

COP 3330: Introduction To Classes Page 18 © Mark Llewellyn

Creating Objects (cont.)
• In some other class, we may create the objects of the class

C. (If we want, we can also create the objects of C in C
too).

public class C2 {
.... main (...) {

C obj1, obj2;
obj1 = new C();
obj2 = new C();

}
.
.

}

x

x

y

y

obj1

obj2

1

2.2

1

2.2

COP 3330: Introduction To Classes Page 19 © Mark Llewellyn

Dot Operator
• Once an object of a class is created, its instance methods

can be invoked using the dot operator.
• Of course, the method which will be invoked must be

accessible from that class.
• To invoke a method:

object.methodname(actual-parameters)

Example: (in a method of C2)
obj1.m1(4);
obj2.m1(3);
obj1.m2(3.3);
String s = stdin.readLine();
int a = Integer.parseInt(stdin.readLine().trim());

COP 3330: Introduction To Classes Page 20 © Mark Llewellyn

Dot Operator (cont.)
• Using dot operator, we may also access the fields of an

object.
• To access a field: object.field

Example: (in a method of C2)
obj1.x = 4; will not work, because x was private

if C is declared as follows, the above assignment will be okay.

class C {
public int x;

...
}

COP 3330: Introduction To Classes Page 21 © Mark Llewellyn

Dot Operator (cont.)
• For static fields and methods, we can use the dot

operator.
• We can access static fields and methods as

follows:

ClassName.FieldName
ClassName.MethodName(ActualParameters)

• To access static members, we do not need to
create an object from that class.

COP 3330: Introduction To Classes Page 22 © Mark Llewellyn

Dot Operator (cont.)
• We may also access static members using objects

as follows.

Object.FieldName
Object.MethodName(ActualParameters)

• All the objects will access the single copy of a
static member.

COP 3330: Introduction To Classes Page 23 © Mark Llewellyn

Dot Operator (cont.)
class C1 {

public int x;
public static int y=5;
public C1() { x=1; }
public void setX(int val) { x=val; }
public static void printY() { System.out.println(“y: “ +
y); }

}
// in a method of some other class

C1 o1,o2; o1.x = 2;
C1.y = 10; o2.x = 3;
C1.x = 10; ILLEGAL o1.y = 4;
C1.printY(); o2.y = 5;
C1.setX(10); ILLEGAL C1.y = 6;
o1 = new C1(); o1.setX(7);
o2 = new C1(); o2.setX(8);

o1.printY();
o2.printY();

COP 3330: Introduction To Classes Page 24 © Mark Llewellyn

Another Example with Static Fields
class C {

private static int count = 0;
private int objIndex;
public C() { count=count+1; objIndex=count; }
public static int numOfObjs() { return count; }
public int objID() { return objIndex; }

}
// in a method of some other class

C o1,o2,o3;
o1 = new C();
o2 = new C();
o3 = new C();
System.out.println(o1.objID());
System.out.println(o2.objID());
System.out.println(o3.objID());
C.numOfObjs();

COP 3330: Introduction To Classes Page 25 © Mark Llewellyn

Reference Assignment
• Assignment takes a copy of a value and stores it in a variable.

int x,y; x 5 x 5
x=5; y=6; y=x; y 6 y 5

before assignment after assignment

public C {
public int x,y;
public C() {x=1;y=2;}

}

// in a method of another class
C c1,c2;
c1=new C();
c2=c1;

// c1 and c2 will point to the same object

COP 3330: Introduction To Classes Page 26 © Mark Llewellyn

Aliases
• Two or more references may refer to the same

object. They are called aliases of each other.

• Aliases can be useful, but they should be managed
carefully.

• Affecting the object through one reference affects
its all aliases, because they refer to the same
object.

Example:
c1.x = 5; //c2 is affected too.

COP 3330: Introduction To Classes Page 27 © Mark Llewellyn

Garbage Collection

• Objects are allocated on the heap (a part of
memory space reserved for our programs to run).

• When an object no longer has any valid references
to it, it can no longer be accessed by the program.

• In this case, it is useless, and it is called garbage.

• Java performs automatic garbage collection
periodically to collect garbage for future use.

COP 3330: Introduction To Classes Page 28 © Mark Llewellyn

Super-Quick Review of Objects
• In C, you have typedef statement which allows you to give

meaningful names to built-in types or to “compound”
types.
typedef Money double; //this is C not Java

typedef struct {

int balance;

char* name;

} Account;

• We can think of objects as structs. We create a new type
every time we define a new class. And classes are just
chunks of data (like structs)…but with behavior. In other
words, we package data along with the code that operates
on it.

COP 3330: Introduction To Classes Page 29 © Mark Llewellyn

Super-Quick Review: Creating an Object
• Assume we have a class called Money
• Then one could “instantiate” an object of type Money by

calling
new Money();

• But an instantiation by itself does not associate the newly
constructed object with a name!

• The assignment operator (=) is usually used together with
new to create a new object and give it a name.

cash = new Money();
• The right hand side of above statement creates object and

assignment operator “binds” cash to that object.
• One can think of cash as a kind of pointer to an object of

type Money that you don’t have to de-reference.

COP 3330: Introduction To Classes Page 30 © Mark Llewellyn

Super Quick Review – Example

yourcash : Moneymycash : Money

mycash = new Money();
yourcash = new Money();

mycash yourcash

COP 3330: Introduction To Classes Page 31 © Mark Llewellyn

Super Quick Review (cont.)

• We have to declare mycash somewhere before using it.
What data type is mycash?

Money mycash;

• What value does mycash have after above statement is
executed?

• Its value is null (a reserved word). Any “unbound”
variable in Java is said to be null.

• What happens if one tries to send a message to an unbound
(null) variable?

• Run-time error called NullPointerException

COP 3330: Introduction To Classes Page 32 © Mark Llewellyn

Declare – Instantiate – Bind
1. Declare the variable, specifying the class to

which it belongs.

2. Instantiate an object with a class
conforming to the variable.

3. Bind the variable (declared in step 1) to the
object instantiated in step 2.

COP 3330: Introduction To Classes Page 33 © Mark Llewellyn

Variables
• In a Java program, we can access three

kinds of variables in the methods.
– instance variables – declared in the class

(without using static keyword)

– class variables (static variables) – declared in
the class (with using static keyword)

– local variables – declared in a method or as its
formal parameters.

COP 3330: Introduction To Classes Page 34 © Mark Llewellyn

Variables (cont.)

• An instance method of a class can refer (just
using their names) to all instance variables,
all static variables declared in the class, and
all its local variables.

• A static method of a class cannot refer to
any instance variable declared in that class.
It can only refer to static variables and its
local variables.

COP 3330: Introduction To Classes Page 35 © Mark Llewellyn

Variables (cont.)
class C {

int x;
static int y;
public void printX() { System.out.println(“x: “+x); }
public static void printY() { System.out.println(“y: “+y); }
public void m1(int a, int b) {

int c=a+b;
x=a; y=b;
printX(); printY();

}
public static m2(int a, int b) {

x=a; ILLEGAL – static method refers to instance variable x.

y=b;
printX(); ILLEGAL – static method refers to instance method.

printY();
}

}

COP 3330: Introduction To Classes Page 36 © Mark Llewellyn

Methods
• A class contains methods.

• A method is a group of statements that are given a
name.

• Each method will be associated with a particular
class (or with an instance of that class).

• We may define methods and invoke them with
different parameters. When its parameters are
different, their behavior will be different.

COP 3330: Introduction To Classes Page 37 © Mark Llewellyn

Method Definition
• All methods follow the same syntax when they are defined:

return-type method-name (formal-parameter-list) {
statements

}

• return-type indicates the type of the value returned from this method.
• method-name is the name of this method (an identifier),
• formal-parameter-list indicates:

– how many parameters will be taken by this method
– the names of the formal parameters (how do we use them in the

inside of this method)
– the data types of these parameters

• statements are the executable statements (and declarations for local
variables) of this method. These statements will be executed when this
method is invoked.

COP 3330: Introduction To Classes Page 38 © Mark Llewellyn

Method Definition -- Example

return-type method-name formal-parameter-list

int thirdPower(int num) {
int cube; local variable declaration
cube = num*num*num;
return cube; return statement

}

COP 3330: Introduction To Classes Page 39 © Mark Llewellyn

Return-Type and Return Statement

• The return type can be any data type (a primitive data type
or an object data type) or void.

• A return statement will be in the following form:

return expression ;

• where the type of the expression must be the same as the
return type of that method.

COP 3330: Introduction To Classes Page 40 © Mark Llewellyn

Return-Type and Return Statement (cont.)

• If the return type of a method is different from void, that
method must contain at least one return statement.
– When a return statement is executed in that method , we exit from

that method by returning the value of the expression in that return
statement.

– Normally, method calls for these methods are parts of expressions.

• If the return type of a method is void, that method does
not need to have a return statement.
– In this case, when the last statement in that method is executed, we

return from that method. (Or, it may contain a return statement
without an expression return;)

– Normally, a method call for the method with void return type is a
statement.

COP 3330: Introduction To Classes Page 41 © Mark Llewellyn

NumberFormat Class (java.text)
This class is abstract which means that an object can not be instantiated
using a new operator. You request an object from one of the methods
invoked through class itself.

String format(double number)
returns a string containing the number in the format
specified by the object

String s=objNumberFormat.format(double_n);

Example:

an instance of
NumberFormat object

converts double_n
into string in accordance
with objNumberFormat

COP 3330: Introduction To Classes Page 42 © Mark Llewellyn

Methods in NumberFormat Class

•Each of these methods return an object in the specified
format.

static NumberFormat getCurrencyInstance()
returns an instance of NumberFormat object,
that represents currency format

static NumberFormat getPercentInstance()
returns an instance of NumberFormat object,
that represents percentage format

COP 3330: Introduction To Classes Page 43 © Mark Llewellyn

Example Using NumberFormat
import java.text.NumberFormat;
public class Price
{

double total=19.35;
double tax_rate=0.06;
NumberFormat money=

NumberFormat.getCurrencyInstance();
String formatted_total= money.format(total);
NumberFormat percent=

NumberFormat.getPercentInstance();
String

formatted_tax=percent.format(tax_rate);
}

COP 3330: Introduction To Classes Page 44 © Mark Llewellyn

DecimalFormat Class (java.txt)
DecimalFormat (String pattern)

constructor: creates a DecimalFormat object
with specified pattern

DecimalFormat fmt=new DecimalFormat(“0.###”);

type of object
constructor
is called

name of object

argument of
String type is sent
to constructor

an object
is created

COP 3330: Introduction To Classes Page 45 © Mark Llewellyn

void applyPattern (String pattern)
applies the specified pattern to the DecimalFormat object

fmt.applyPattern(“0.####”);

Method – applyPattern

COP 3330: Introduction To Classes Page 46 © Mark Llewellyn

String format (double number)
returns a string containing the number, formatted
in accordance with the NumberFormat object

int radius=5;
double area=Math.PI*Math.pow(radius,2);
System.out.println(fmt.format(area));

Output: 78.5398

Method - format

COP 3330: Introduction To Classes Page 47 © Mark Llewellyn

An Example – Designing A Class

• The following few pages will present a complete
example of designing a class from the ground up
for a specific application.

• Our application is a banking enterprise where we
need to keep track of customer accounts.

• We will design a class called accounts.

COP 3330: Introduction To Classes Page 48 © Mark Llewellyn

Design of the class Account
•Variables to describe the state of an Account object:

name of the owner
account number
balance in the account
interest rate

•Data we are going to provide to create a new account
name of the owner
opening balance
account number

•Methods (service) provided for maintaining accounts
deposit an amount
withdraw an amount
add interest to the account
get name of the owner
get balance

COP 3330: Introduction To Classes Page 49 © Mark Llewellyn

// Developer: Mark Llewellyn Date: May 2007
// A banking account class

import java.text.NumberFormat;
public class Account{
private NumberFormat fmt =

NumberFormat.getCurrencyInstance();
private final double RATE = 0.045;
private long acctNumber;
private double balance;
private String name;

//--
// Sets up the account by defining its owner,
// account number, and initial balance.
//--

public Account (String owner, long account,
double initial)

{
name = owner;
acctNumber = account;
balance = initial;

}

COP 3330: Introduction To Classes Page 50 © Mark Llewellyn

//---
// Validates the transaction, then deposits
// the specified amount into the account.
// Returns the new balance.
//---

public double deposit (double amount) {
if (amount < 0) // deposit value is negative
{
System.out.println ();
System.out.println ("Error: Deposit amount

is invalid.");
System.out.println (acctNumber + " "

+ fmt.format(amount));
}
else
balance = balance + amount;

return balance;
}

balance is private, but you can get it from outside through a public
method called getBalance – see page 52.

COP 3330: Introduction To Classes Page 51 © Mark Llewellyn

public double withdraw (double amount, double fee) {
amount += fee;
if (amount < 0) // withdraw value is negative
{

System.out.println();
System.out.println("Error: Withdraw amount is invalid.");
System.out.println("Account: " + acctNumber);
System.out.println("Requested: " + fmt.format(amount));

}
else

if (amount > balance) // withdraw value exceeds balance
{

System.out.println ();
System.out.println("Error: Insufficient funds.");
System.out.println("Account: ” +acctNumber);
System.out.println("Requested: "+fmt.format(amount));
System.out.println("Available: "+fmt.format(balance));

}
else

balance = balance - amount;
return balance;

}

COP 3330: Introduction To Classes Page 52 © Mark Llewellyn

public double addInterest () {
balance += (balance * RATE);
return balance;

}

public double getBalance () {
return balance;

}
public long getAccountNumber () {

return acctNumber;
}

public String toString () {
return(acctNumber + "\t" + name +

"\t" + fmt.format(balance));
}

}// end class Account

COP 3330: Introduction To Classes Page 53 © Mark Llewellyn

import Account;

public class BankAccounts {
//Creates some bank accounts and requests various services.
public static void main (String[] args) {

Account acct1=new Account(“Michael Schumacher",
72354, 502.56);

Account acct2=new Account(“Alessandro Petacchi",
69713, 40.00);

Account acct3=new Account(“Mario Cipollini",
93757, 759.32);

acct1.deposit (25.85);
double petacchiBalance=acct2.deposit(500.00);
System.out.println (“Petacchi balance after deposit:”

+ petacchiBalance);
System.out.println (“Petacchi balance after withdrawal: ”

+ acct2.withdraw (430.75, 1.50));

The BankAccounts Class

COP 3330: Introduction To Classes Page 54 © Mark Llewellyn

acct3.withdraw (800.00, 0.0);// exceeds balance
acct1.addInterest();
acct2.addInterest();
acct3.addInterest();

System.out.println ();
System.out.println (acct1);
System.out.println (acct2);
System.out.println (acct3);

} // end of main
} // end of class BankAccount

COP 3330: Introduction To Classes Page 55 © Mark Llewellyn

Output of the BankAccounts Program

COP 3330: Introduction To Classes Page 56 © Mark Llewellyn

Parameters
• A method accepts zero or more parameters

• Each parameter in the parameter list is specified by its type
and name.

• The parameters in the method definition are called formal
parameters.

• The values passed to a method when it is invoked are
called actual parameters.

• The first actual parameter corresponds to the first formal
parameter, the second actual parameter to second formal
parameter, and so on..

• The type of the actual parameter must be assignment
compatible with the corresponding formal parameter.

COP 3330: Introduction To Classes Page 57 © Mark Llewellyn

Parameters (cont.)

• Each time a method is called, the actual arguments in the
invocation are copied into the formal arguments

char calc (int num1, int num2, String message)
{

int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

COP 3330: Introduction To Classes Page 58 © Mark Llewellyn

Call-by-Value
• When an actual parameter is passed into a method,

its value is saved in the corresponding formal
parameter.

• When the type of the formal parameter is a
primitive data type, the value of the actual
parameter is passed into the method and saved in
the corresponding formal parameter (CALL-BY-
VALUE).

COP 3330: Introduction To Classes Page 59 © Mark Llewellyn

Call-by-Reference
• When the type of the formal parameter is an object

data type, the reference to an object is passed into
the method and this reference is saved in the
corresponding formal parameter (CALL-BY-
REFERENCE).

• In call-by-value, there is no way to change the value
of the corresponding actual parameter in the
method.

• But in call-by-reference, we may change the value
of the corresponding actual parameter by changing
the content of the passed object.

COP 3330: Introduction To Classes Page 60 © Mark Llewellyn

Call-by-Value and Call-by-Reference - Example
public class Test {
public static void main(String[] args) throws IOException {

int i=1; MyInt n1,n2,n3;
n1=new MyInt(3); n2=new MyInt(5); n3=new MyInt(7);

values before chvalues
chvalues(i,n1.ival,n2,n3);

values after chvalues
System.out.println(i+”-”+n1.ival+”-”+n2.ival+”-”+n3.ival);

}
static void chvalues(int x, int y, MyInt w, MyInt z) {

x=x-1; y=y+1;
w = new MyInt(8);
z.ival = 9;

}
}
class MyInt {
public int ival;
public MyInt(int x) { ival=x; }

}

COP 3330: Introduction To Classes Page 61 © Mark Llewellyn

Call-by-Value and Call-by-Reference – Example

Step 1 - Execution begins in Main

i n1 n3n2

in main before invocation of chvalues

1

ival ivalival
3 75

COP 3330: Introduction To Classes Page 62 © Mark Llewellyn

i n1 n3n2
in main

1

ival ivalival
3 75

x zwy
1 3

Step 2 – Invoke Method chvalues(i,n1.ival,n2,n3)

in chvalues

actual parameters

formal parameters

Red dotted lines indicate the passing of parameter values.

Notice that formal parameters x and y are primitive types and thus copies
of the actual parameters are passed (pass by value) while w and z are
objects and thus references to the objects are passed (pass by reference).

COP 3330: Introduction To Classes Page 63 © Mark Llewellyn

i n1 n3n2
in main

1

ival ivalival
3 75

x zwy
1 3

Step 3 – Method chvalues Executes

in chvalues

actual parameters

formal parameters

= 0 = 4

ival
8

= 9

COP 3330: Introduction To Classes Page 64 © Mark Llewellyn

i n1 n3n2
in main

1

ival ivalival
3 75

x zwy
1 3

Step 4 – Return to Main Method – Print Results

in chvalues

actual parameters

formal parameters

= 0 = 4

ival
8

= 9

Output: 1 – 3 – 5 – 9

COP 3330: Introduction To Classes Page 65 © Mark Llewellyn

Object Reference this
• The keyword this can be used inside instance methods to

refer to the receiving object of the method.
• The receiving object is the object through which the

method is invoked.
• The object reference this cannot occur inside static

methods.
• Two common usage of this:

– to pass the receiving object as a parameter
– to access fields shadowed by local variables.

• Each instance method runs under an object, and this object
can be accessible using this keyword.

COP 3330: Introduction To Classes Page 66 © Mark Llewellyn

Passing this as a Parameter
public class MyInt {

private int ival;
public MyInt(int val) { ival=val; }
public boolean isGreaterThan(MyInt o2) {

return (ival > o2.ival);
}
public boolean isLessThan(MyInt o2) {

return (o2.isGreaterThan(this));
}

}

Usage in some other place (method)
MyInt x1=new MyInt(5), x2=new MyInt(6);
x1.isGreaterThan(x2); //output false
x1.isLessThan(x2); //output true

COP 3330: Introduction To Classes Page 67 © Mark Llewellyn

Passing this as a Parameter (cont.)
Variable bindings just after entering isGreaterThan method of x1

x1

: MyInt (5) : MyInt (6)

x2

o2

x1.ival is compared to x2.ival, since 5 is not greater than 6, false is returned

COP 3330: Introduction To Classes Page 68 © Mark Llewellyn

Passing this as a Parameter (cont.)
Variable bindings just after entering isLessThan method of x1

x1

this

: MyInt (5) : MyInt (6)

x2

o2

x1.isLessThan(x2) sets o2 = x2 and then calls o2.isGreaterThan(this)

this refers to the object on which the method invocation occurred
which is x1. So the invocation is: o2.isGreaterThan(x1). On this
invocation the formal parameter o2 becomes x1and what is returned is
the result of the comparison of x2.ival > x1.ival (6 > 5) which is true.

